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Abstract 

~~ ~ 

Artificial Immune  System  is a rapidly  growing  field  of  information processing and 
computing based  upon  immune  inspired  paradigms of nonlinear dynamics. This 
paper  introduces  stochastic  models  which  mimic the phenomenology of basic 
functions of  immune systems such as self-nonself  discrimination, self-repair, 
predator-prey pursuit, and reproduction. These  models  represent a unified 
formalism for building  an  artificial  immune  system  for  effective  information 
processing and computing. 

1 .  Introduction. 
Artificial I~~~~~ systems ( A S .  Perelson, 1988; D. Dasgupta, 1998) is a rapidly growing field  of 

information processing based upon immune  inspired  paradigms  of  nonlinear dynamics. 
Although  it has many  features  in  common  with  neural networks, there  are  some 
differences:  the  immune system is more complex, more diverse, and it performs many 
different functions simultaneously. In  contradistinction  to  neural networks, the  immune 
system, from the  viewpoint  of  nonlinear dynamics, can  be  considered as a multi-body 
system (with “bodies”  represented by cells) which  is  interconnected  via  information flows. 
Since these flows as well  as responses to  them  may  be distorted, delayed, or incomplete, 
the  motion  of each cell  becomes  stochastic,  and  it  can  be  simulated  by a controlled  random 
walk. 

One  of  the  main  challenges  in  modeling  living  systems is to distinguish a random 
walk  of  physical  origin (for instance, Brownian  motions)  from  those of  biological  origin 
and  that  will  constitute  the  starting  point of the  proposed  approach. As conjectured in 
‘999) the  biological  random  walk  must  be nonlinear. Indeed, any  stochastic  Markov 
process can be described by linear  Fokker-Planck  equation (or its  discretized version) (H. 

(M. Zak, 
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Risken. 1989) only  that  types  of  processes  has  been  observed in the  inanimate world. 
However, all such processes  always  converge  to a stable (ergodic or periodic) state, i.e., to 
the states of a lower  complexity  and  higher entropy. At  the same  time, the evolution of 
living systems is directed  toward a higher  level of complexity if complexity  is  associated 
with a number  of  structural variations. The  simplest way  to  mimic such a tendency  is  to 
incorporate a nonlinearity  into  the  random  walk;  then  the  probability  evolution  will  attain 
the features of  the Burgers equation Witham, 1976) * . the  formation  and  dissipation  of shock 
waves initiated  by  small  shallow  wave disturbances. As a result, the  evolution  never 
“dies”:  it produces new  different  configurations  which  are  accompanied  by  increase or 
decrease  of  entropy  (the  decrease  takes  place during formation  of shock waves, the 
increase-during  their dissipation). In  other words, the  evolution  can  be  directed  “against 
the second law  of  thermodynamics” (E. Schradingerv 1945) by forming  patterns outside of 
equilibrium. 

In order to  elucidate  both  the  physical  and  the  biological  aspects  of  the proposed 
model, let us  start  with a one-dimensional  random  walk: 

xt+, = x, + h Sgn[ R(f1) + p ]  h = Const, z = Const, (1) 

where h and z are the space (alongx) and  time steps respectively; R(k1) is a random 
function taking  values  from -1 to 1 with  equal  probability, p is a control  parameter  while 

1 , u I  I I /2  . (Physical implementations of this model  were  discussed  in M. Zak, 1990,99) 

Eq. (1) describes motion  in  actual  physical space. But  since  this  motion is 
irregular, it is more  convenient to turn  to  the  probability  space: 

where f (  x ,  t )  is  the  probability  that  the  moving  particle  occupies  the  point x at  the  instant t, 
and  the  transition  probability 

1 
2 

p = - + p , O < p l l  (3) 

is well known (H. Riskrn. 1959; W. Feller, 1957) that  if  the system interacts with the external world, 
1.e., 

. 
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p = p ( x ) ,  and therefore, p = p ( x )  (4) 

then  the solution to Eq. (2) subject to  the  reflecting  boundary conditions converges to a 
stable stochastic attractor. However, if 

p = p ( f ) ,  and therefore, p = p ( f )  , 

Eq. (2) becomes nonlinear, and  Eq. (1) is coupled with  Eq. (3) via  the feedback (3). 
From the  physical viewpoint, the  system (l), (2) can  be  compared  with  the 

Langevin  equation  which  is  coupled  with  the corresponding Fokker-Planck equation such 
that  the  stochastic  force is fully  defined  by  the  current  probability distributions, while  the 
diffusion coefficient is fully  defined by the  stochastic  force.  The process described  by this 
system is  Markovian  since  future still depends  only  upon present, but  not past. However, 
now  present  includes not only  values  of  the  state  variable,  but also its probability 
distribution, and  that  leads  to  nonlinear  evolution of random  walk. 

From the  mathematical viewpoint, Eq. (1) simulates  probabilities  while Eq. (2) 
manipulates by their values. The  connection  between  these  equations  is  the following: if 
Eq. (1) is  run  independently  many  times  and a statistical  analysis  of  these solutions is 
performed, then  the  calculated  probability  will evolve according  to  Eq. (2). 

From the  biological viewpoint, Eqs. (1) and (2) represent  the  same  subject: a 
living specie. Eq. (1) simulates its motor dynamics, i.e., actual  motion  in  physical space, 
while Eq. (2) can  be  associated  with  mental  dynamics  describing  information flows in  the 
probability space. Such an  interpretation (M. Zak, ‘999) was evoked by  the  concept  of 
reflection in  psychology.  Reflection is traditionally  understood  as  the  human  ability to take 
the  position of an  observer  in  relation  to  one’s  own thoughts. In  other words, the 
reflection is a self-awareness via  the  interaction  with  the  “image  of  the self.” In terms of 
the  phenomenological  formalism  proposed above, Eq. (3) represents  the  probabilistic 
“image” of the  dynamical  system (1). If this  system  “possesses” its own image, then  it  can 
predict, for instance, future  expected  values of its parameters, and, by  interacting  with  the 
image, change the  expectations if  they are  not  consistent  with  the  objective.  In  this context, 
Eq (1) simulates acting, and  Eq (2) simulates  “thinking.”  Their  interaction  can be 
implemented  by  incorporating  probabilities,  its  functions  and  functionals  into  the  control 
parameter p (see Eq. (5)). 

. 
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The  objective  of  this  paper  is to exploit the  coupled  motor-mental  dynamics 
approach  to  simulate the phenomenology of  basic  tasks  performed by immune systems 
such as: self-nonself discrimination,  self repair, predator-prey pursuit, multiplication, 
collective strategies, etc. 
2 .  Life  without  intellipence: emerpin? self-organization 

We  will start the  analysis  of  the  coupled  motor-mental  dynamics  with Eqs. (1) and 
(2) where 

Here a and P are  constant  weights 

In order to illustrate  the  fundamental  nonlinear  effects, we will  analyze  the  behavior 
of special critical points by assuming  that 

5n 7r 

12 6 
a=-- , p=-- and 

If"'' = 0 otherwise 

Then  the solution to Eq. (8) will consist of two  waves  starting  from  the points 

x = -C and x = C ,  traveling  toward  each  other  with  the  constant speed v = h/z ,  and 

transporting the values f:" and f i 2 ' ,  respectively, i.e., 

. 
4 



where n is the  number of time-steps. 
At n = l /h,  the  waves  confluence  into  one  solitary  wave  at x = 0:  

f ={ 
I a t  x=O 
0 otherwise 

e 
h 

at t=nZ=-2  

This process represents a discrete  version  of  formation  and  confluence  of shock waves, 
and  it  is characterized by a decrease  of  the  Shannon  entropy  from 

1 1 4  4 
5 5 5  5 

H(O) = --tog, - - -tog, - > 0 to H(nz) = 0 

However, the  solitary  wave (1 1) is  not stationary. Indeed, as follows from Eq. (8), the 

solution  at t = (n  + I)z splits  into  two  equal  values: 

1/2 at x = e + h  
0 otherwise 

The process (13) can be identified as a discrete  version of diffusion during which  the 
entropy increases again  from 

The further evolutionary  steps t 2 (n  + 2)2 will  include  both diffusion and wave effects, 

and therefore, the solution  will  endlessly  display  more  and  more  sophisticated  patterns  of 
behavior  in  the  probability space. The  corresponding  solutions to Eq. (7) represent 
samples of  the  stochastic  process (8) in  the form  of  non-linear  random walks in actual 
physical space. 

Thus, the solutions to  coupled  motor-mental  dynamics  simulate  emerging self- 
organization  which  can  start spontaneously. At this  level of description, such an  effect is 
triggered  by  instability  rather  than  by a specific  objective. In other words, the  model 
represents a “brainless” life.  However,  it serves well  to  the  global  objective  of  each  living 
system: the survival. Indeed, it is a well  established  fact in biology (E. ‘996) that 
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marginal  instability  makes  behaviors of  living  system  more  flexible  and therefore, more 
adaptable to changing environment. 

The model (I) ,  (2) is easily  generalizable to three-dimensional  motions: 

Here x(‘ ) ,   x ( ’ ) ,  x (3 )  are the space coordinates, and f = f (  x ( ’ ) , ~ ( ~ ) , x ( ~ ’ , t )  is the joint 

probability  that  the specie occupies  the  point x ( ’ ) , d 2 ) , d 3 )  at  the  instant  t. 

As in  the  one-dimensional  case,  here 

pi  =-+pi ,  1 i=1,2,3 
2 

In  particular,  one can assume  that 

It should be  noticed  that  the  nonlinear  random  walks (15) in all three directions are  coupled 

by means of  the joint probability f via  the  control  parameters pi .  
From the  mathematical viewpoint, the  model  of  mental  dynamics (8) links to the 

Burger’s equation  in  a  sense  that its pattern  formation  outside of equilibrium is based upon 
the balance between  dissipation  and  shock  waves. 

In general, this model can  be  enriched  with  the  Belousov-Zhabotinskii effects by 
slight modification of  random  walk (7): 

1 
2 

x(+,  = x ,  +-h{l-Sgn[R(&l)+p’]}Sgn[R(+l)+p] 

which  now  includes  the  third  choice  for  the  specie:  to  remain at rest  with the probability 
I 
2 

q=-+p’,  
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The corresponding version  of Eq. (8) reads: 

If q = q ( f )  and p = p ( f ) ,  one  arrives  at the  discretized  version  of  the  combined Burger- 

Belausov-Zhabotinskii equation  which  possesses a variety  of  new complex patterns  outside 
of equilibrium, and  that  increases  the  adaptability  of  species  to  environmental changes. 
One should recall  that  Belousov-Zhabotinskii  equation  was  already  exploited for studying 
patterns  formation  in  biology (*. Mikhaiiov* i990) . However, these  patterns  dwell  in  physical 
space;  in  contradistinction to that, Eqs. (8) and (8a) simulate  patterns  in  the  probability 
space, i.e., in  the space of  the  mental  dynamics so that  the corresponding actual  motions in 
physical space are  described by nonlinear  random  walks (7), and (7a) respectively. Due to 
that, a specie is  not  locked  up  in a certain  pattern of  behavior: it still  can  perform a variety 
of motions, and  only  the statistics of these  motions is constrained by this pattern. It should 
be emphasized that such a “twist”  is  based  upon  the  concept of reflection, i.e., the existence 
of the self-image. 

In  the  next  section  we  will discuss motions  driven  by  the  objectives; for that 
purpose, we  will  stay  with  the  simpler  models (7),(8), since  the  formation  of  patterns 
outside of equilibrium will  be  less  important. 

3.  Self-identification and self-reDair. 
One of  the  most remarkable  properties  of  living systems is  the  ability  to  detect  and 

to repair a damage  to  their  structure,  and  this  ability  is  observed  at such low  level as DNA. 
Without  going into details of the  biological  machinery of  the process, we  will try to  exploit 
the  phenomenology  of our artificial  model  of  the  motor-mental  dynamics to simulate self- 
identification  and  self-repair.  The  key to that  is  provided  by  the  fact  of possession of  the 
self-image. We will  assume  that  the  identity  of a specie  is  represented  by  the  weights 
a; and pi (see Eqs.  (7),  (8), or (18)). Indeed, by changing  these weights, one  can 

switch from one  evolutionary scenario to  another. 
Let us  turn  to  the  one-dimensional  model  (7), (8) of  an  artificial  specie  and assume 

that  the  nominal  values of  the weights a and p are: 
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Then  the  artificial  specie  can  perform a calibration  test:  starting with any  initial  position 

x = x, ,  I.e., 

f ={ 
I at x = x.  
0 otherwise 

it must move deterministically, as  it follows from Eq. (7). 

= x. + nh, n = I ,  2,. . .etc. (20) 

Suppose that as a result of some  structural damage, the weights (19) have  been 
changed: 

Then, according  to Eq. (8), the  motion  with  the  same  initial conditions (20) will  be 
represented  by a random walk: 

Now  the degree of  the  damage  can  be  measured  by  the  difference  between  the  trajectories 
(21), and (23) in  the form of  the  function: 

I "  2 

E = -x(." + kh - X k )  
k=O 

To find  the correct  weights (19), the  specie  has  to  minimize  the  function (24). In 
order to do that  it  can  perform  the  following  simple  algorithm:  start  with  the  pair  of 

arbitrary  values a!'),pl') and a\'),&'), and  run  the  system (7); (8) subject  to  the  initial 

conditions (20)  twice;  as a result, find the corresponding values E") and E"); then use 

the following recurrent  relationships: 
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which  actually  implement  the  gradient  decent  of E, and therefore, the sequences 

a?’ and pi’) converge: 

Strictly speaking, the  limit  values  may  be  different  from  the corresponding nominal 

values in (19) if  the  functional (24) has  local  minima. Therefore, the  specie has to  repeat 

the  whole  procedure  several  times  starting  from  different  values  of a~’),/$’),a!2), and 

and  then  to choose those  limit  values  in (27) which  correspond to the lowest minima.  It 
should be  noticed  that  prior to each iteration  in Eqs. (25), (26), the system (7), (8) have  to 

be run in order to find the  corresponding  value of E‘’) 

4 .  Self-nonself  discrimination. 
Immunology deals with  understanding how  the  body distinguishes between  what is 

“self” and “nonself.” The biological  machinery of  this process is  not  well understood, but 
it involves cell surface molecules  that  are  able  to  specifically  bind and adhere to other 
molecules on opposing cell surfaces. However, within  the  formalism  of  the  motor-mental 
dynamics, the  only  way  to  make  the  self-nonself  discrimination is by observing the 
behavior of  the  potential invader, extraction its phenomenological invariants (for instance, 

the  weights a and p in  Eqs. (7), (8)) and  by  comparison  with those of  the self. In this 

section we  will  propose a simple  procedure  for  implementation of this strategy. 
Let us assume  that a body  cell  motion  is  simulated  by  the simplest model, i.e., by 

the system (1) and (2), and  its  identity is represented by  the weights a,p in Eq. (6). 

Suppose that the unknown  agent has the  same  model,  but  different weights a’,p’. What 
information  can  the  body  cell  infer by observing  the  motion  of  the invader? 

If  the  agent starts with a deterministic  position  and  makes n steps, he  may  go  via 

2” different  trajectories. All these  trajectories  can  be  placed  between  the two extreme 
trajectories which  are  the  solutions  to  the  following  versions of Eq. (2), respectively: 
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p 2  If2 
i f p  c 1/2 

and p = p(f,a,P) represents  the  identity of the  body cell. The solutions to Eqs. (28) and 

(29) describe the  most  and  the  least  probable  trajectories,  respectively,  if  the  agent  belongs 
to the  same class as  the  “self.” Hence, the  simplest  strategy for the  body  cell  is  the 
following: compare  the  observed  trajectory 

of  the  agent  with  the  extreme  trajectories 

by computing the sums 

If El > E2 

then  the agent is  nonself,  and 

if El < E ,  

then  the  agent is self. 
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Obviously the  confidence of these conclusions is  not  high:  based  upon  recent 
advances  in  statistical  analysis  of  time series, discrimination  can  be  performed  much  more 
accurately. However, time  is  precious  for  immune  response: any extra-second  can  lead to 
multiplication  of  the invader. Therefore, the self-nonself  discrimination  based  upon the 
criteria (34)  and (35) can be  adapted as a reasonable  starting  point. 

5 .  Predator-Drev pursuit 
The final  act of the  immune response is to  kill  the invaders. Within  the 

phenomenological  formalism of the  motor-mental  dynamic,  this  can  be  translated into a 
predator-prey pursuit. We  will  assume  that  both  the  predator  and  prey possess not  only  the 
image of the self, but  the  image  of  the  adversary as well.  In  terms  of  the  three-dimensional 
model (15),( 16), the  pursuit  can  be formulated as follows: 

Here Eq. (36) simulates the  motor  dynamics  of  the predator, i.e., a random  walk  in  three- 
dimensional space. Eq. (37) describes the predator's mental dynamics, i.e., evolution  of 
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the probability , ~ ( ’ ) ( x ( ’ ) , x ‘ 2 ’ , x ‘ . ’ ) , r )  where ,d i )  denote  the  predator’s position, 

p I ,  p 2  and p3 are  the  transition  probabilities 

Finally, Eqs. (38) and (41) simulate  mental  images  of  the  adversaries: 

j(2)(J(’) ,J(2),J(3),  r )  , and ai represent  the prey’s images  in  the “mind” of the predator, and 

,(’I( X(’) , x  X ( 3 ) ,  t )  and pi  represent  the  predator’s  images  in  the “mind” of the prey. 

If the  predator  and the  prey  never  met before, the  best  strategy for them is to 
assume  that 

a i  = ( h ? ) ,  = ( I - % )  (42) 

i.e., to consider the  adversary  as  an extreme opposite to the self. 
At this point, Eqs. (36), (37) and (39),(40) are  coupled  only  in pairs, while Eqs. 

(38) and (41) are decoupled. 
Now we  will  introduce  the  objectives  of  the  pursuit:  the  predator  objective is to 

minimize  the  distance  between  the  prey  and  himself  during  the  next n steps, and the prey’s 
objective  is to maximize the  same  distance. 

The distance  after n steps is expressed as: 

k = O  i = l  

The  only  way to optimize  it  is  to  manipulate  by  the  weights a,, pj( , ) ,  ai(?) and pi (2)  in 

Eqs. (42) and (43) using the  strategy  of  the gradient  descent  approach (see Eqs. (25) and 
(26)). However, here  this  strategy  can  not  be  applied  in a direct  way since neither  the 

- 
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predator, nor the  prey  know  their  actual  future  positions and y‘” .  Therefore, these 

positions  have  to  be  predicted  based upon their  images.  The  images  can be represented by 
expectations, modes  or  medians of  the corresponding  probability distributions. For 
instance,  in case of expectations,  the  distance (45) is  replaced  by: 

k=O i=/ 

Then the predator’s and  the  prey’s  images  of  the  same  objective are, respectively: 

k=O i = /  

k=O i=l 

These images are  different  since  neither  the predator, nor  the  prey knows the  actual 

probabilities f 2 )  and f ( ‘ )  of  their adversaries, and they  replace  them  by  the  images 

j (2 )  and f ( ’ ) ,  respectively (see Eqs. (42), (43) and (44)). Now the strategy of the predator 

follows from the  gradient  descent  minimization: 

Similarly, the  strategy of  the  prey follows  from  the  gradient  descent  maximization: 
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Thus, prior to each move, the  predator  and  prey  find the  optimal weights ai and pi from 

Eqs. (50) - (53), plug  them  into Eqs.  (36) - (41) via Eq. (42), and  then  make  the  next 
(“optimal”) step. 

There are four comments  to  be  made  concerning  the  model  pursuit. First of all, the 
system (36) - (41) is now  fully  interconnected  via the  objectives (48),  (49) by  means of 
Eqs. (50) - (53) and (42),  (43). In  particular,  that  means that  the stochastic process (37) 

. and (40) are correlated. But  it  does  not  necessarily  mean  that  there exists a joint probability 

function f ( ( x } , {y} )  for  which f ” )  and f 2 )  are  the  conditional probabilities. Indeed, as 

, special  compatibility  constraints  should  be  imposed  upon  the 

transition  probabilities p and q in  order  to  guarantee  the  existence  of f . Hence, applying 

the  terminology  introduced  in (M. Zak+ 1997) , the  stochastic processes (37) and (38) are 

entangled  in a sense that  there  is  no such a transformation of coordinates {x} , {y}  which 

would decouple them. 

shown in (M, Zak. 1997-98) 

Secondly, each specie  exploits  the  probabilistic  images of  the  self  and its adversary 
to  predict future positions, and therefore, to  make  the  best  available move, and this 
remarkable property  is a privilege of living  systems. 

Thirdly, success of  the pursuit depends upon the  degree  of superiority of  the 
predator’s  mental  capacity  over  those of  the  prey  if  the  mental  capacity  is  measured  by  the 

speed  of learning, i.e., by finding  the  correct  values  the  weights a and p from the 
gradient descent (50), (5 1). 

Finally, in  the  pursuit  model,  each specie demonstrates  intelligence since its activity 
is  not spontaneous any  more,  but  it  is  rather  controlled by  the objective. 

6 .  Innate and acauired immunitv. 
In  this  section we  will propose a biological  interpretation  of  the  pursuit  model 

introduced above. As follows  from that model, the successful  defense  against  an  invader 
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can be associated  with  the  catching  of a prey  by the predator, and that depends upon how 
well  the  predator  predicts  the prey’s moves.  The  power  to  predict starts with Eq. (44) 
when  the  predator  selects  the  transition  probabilities for his  image  of  the prey. The  ability 
to  make  this  simple  and  universal  choice  mimics  the so called  innate  immunity  conferred by 
all  those elements with  which  the  specie  was born. However, the  choice (44), in general, 
may  be  not  good  enough:  it  does  not  include  the  specific  characteristic  of  the prey. That is 
why  the  very  first  “acquaintance”  between  the  adversaries  may end in a failure  on the  part 
of  the predator. But  suppose  that  the  predator  managed  to  catch  the prey. Then he  can 
“record”  the  values of  the actual  objective (45) and its image (48). Therefore  the  difference 

will serve as a measure of  the  mismatch  between  the  image  and reality. Based  upon this 

difference, the  predator  can  correct  his  prey’s  image by appropriate  change of G j  in Eq. 

(44). Actually  he should minimize  the  difference (54) as a function  of & j ( 2 )  and 

where 

I 

It should be  noted  that  the  predator  cannot  rerun  the  actual  trajectory  after  the pursuit has 

been ended: he can  change l d E l  only by rerunning  the  image  of  this  trajectory, i.e., by 

simulating the solutions to Eqs. (36)-(38). 

Eventually: 
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i.e., the predator’s image of  the  prey coincides with  the  prey’s  self  image. 
Thus, if Eq. (44) is  associated  with  the innate immunity, Eq. (55) can be associated 

with  an acquired immunity. - .  . 

Obviously  the  invader  learns  from  the  same  experience,  and  as a result, he  can 
acquire some resistance by correcting  his image of the  predator, i.e., by departing from Eq. 

where the weights 6 and p are  adjusted  by  means of minimizing  the  difference 

l c \ E , I  = IE- 2 2 1  

7 .  Viral DNA integration 

The pursuit is not  the  only  model  of  the  body  cell-invador  interaction.  In this 
section  we  will discuss simulation of the process of destruction of  the specie’s self-image 
(cell transformation) by  the  invader’s  intrusion (virus recombination). 

Let us assume  that  the  body  cell’s  behavior is described by Eqs. (7), (S), and 
suppose that the  invader  (virus)  wants to copy  the  cell’s  mental  image. Then, following the 
learning  paradigm  described by Eqs. (46)-(53), the  virus  can  reorganize  its own image  in 
such a way  that  its  mental  evolution  will  be  described by  the  same equation, i.e., by Eq. 
(8). Now,  as a result of intrusion  into  the cell, the  virus  can  change  the  cell’s  transition 
probability (6)  as  follows: 

p=Sin’[a ( f - f ’ ) + P ]  (59) 

where f ’  is the  acquired  virus’  probability distribution. 
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If f = f ’ ,  then 

Thus, the cell has  lost its “free  will” since it  behaves  now  as  an  inanimate  physical  particle 
performing a Brownian  motion. 

This effect can  be  associated  with  the  virus DNA integration. 

8 .  Self-reproduction 
Self-reproduction is  one  of  the  privileges  of  living systems. In order to simulate it 

within the framework of  our  phenomenological  formalism, we  have  to  make  the following 
assumption:  all  the  species of  the same  genotype  have  the  same  probabilistic  invariants  of 
their behaviors. In  other words, their  trajectories  are  different samples of  the  same 
stochastic process, i.e., they  are  different  on  the  level  of  deterministic details, but  are 
identical on the  level  of statistics. Then  the  self-production process can  be  simulated  by 
throwing into the  “battlefield”  new  and  new samples of  the  same stochastic process (for 
instance, the  one described by Eq. (8)). The rate of reproduction  has to be governed by  the 
logistic  equation: 

Nj+]  = N j   - y N j ( I - N )  

where N is the  population density, y is  the  coefficient  describing effects of food 

availability  and  death  rate. 
Thus, again  we  arrive  at  two  different  types of descriptions:  the  global  picture is 

still expressed by Eq. (S), i.e., by  the  mental  dynamics  in  the  probability  space;  the  local 
picture, or motor  dynamics  represented  by a set  of  nonlinear  random walks (7) whose 
density (in physical space) is expressed by Eq. (61). 

If several  genotypes  occupy the same  physical  space (for instance, the  body  cells 
and  the invaders) then  the  global  picture  (in  the  mental space) is  represented  by Eqs. (37), 
(38), (40), and (41), while  the motor dynamics is  described by a two  set  of  random walks 
(36) and (39) whose densities are expressed by the  corresponding versions of Eq. (63). 
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9 .  Collective  performance. 
In this  section we  will  briefly  describe  collective  phenomena in the proposed  model 

of artificial immune  systems  which  combine  the  paradigms  discussed  above  (on  the  level  of 
individual or pairs  of species) with  the  effects  of swarms of species having  variable 
population density. 

a. Collaboration. Suppose that  there  are  several different, but  “friendly” swarms of 
species having  the  probability  distributions 

f i  =&({x,},{Yi},{zj},t);j=1,2 ,... s 

where { x , } ,  {y,} and {z,} are sets of  space  coordinates  occupied  by  the  species  of  the j“ 

swarm. 
We will  postulate  that  within  the  framework of our formalism, the  “friendliness” is 

equivalent to the  existence of the joint probability 

so that f ,  in  (64)  are  interpreted  as  the  conditional  probabilities: 

As shown in (M. Zak, 1997-98) , that imposes upon f i  the  following constraints 

If these constraints are  satisfied,  one  can  describe  the joint evolution of all  the S swarms by 
only one equation: 

r r  1 
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which represents the  evolution  of  the  image  of  the  whole  set  of species in the  probability 
space. This evolution as a collective  brain (z* 1997) controls  motor  dynamics  of  each  specie: 

x;:; = x!))  + h,Sgn( R + Pi) ,  j = I . .  .3s 

in a centralized way. 

The simplest version of the  dependence pi ( f )  is 

I 
2 

p j  = Sin2(ajf + b,), pi = pi - - 

which is similar to Eq. (6)  for a single specie. However, here  the  coefficients ai and p j  
may depend upon the population  density N, i.e., 

At  the same time,  the  coefficient y in Eq. (63) is likely  to  depend  upon  the  probability f ,  

I.e., 

As a result, Eqs. (71) and (72) couple  the  motor-menta1  dynamics (69),(70) with  the 
dynamics of  the  population  density  (63). 

Hence, in  addition  to  multi-dimensional  version  of  the  nonlinear effects discussed 
for a single specie, such as  the spontaneous self-organization, one can  expect  phenomena 
associated with  many-body  problem:  aggregation,  formation of  new alliances, explosions 
of  the population densities, etc. 

b. Competition.. Suppose the swarms described by  the probabilities (64) are “hostile.” In 
terms of our formalism it means  that  the constraints (67) are  not satisfied, and therefore, a 
joint probability (65) does  not exist. In  other words, the hostile swarms cannot  be 
controlled  by a unified  “collective  brain”  as in the previous case. However they  can  be 
entangled in a more  sophisticated  way.  Indeed,  here  instead of  Eq (65), one arrives at a set 
of S coupled equations: 
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where 

Each of these equations  represent  the  evolution  of  the  image of  the corresponding swarm; 
however, these evolutions are coupled via Eqs. (74). 

In order to  emphasize  the  fundamental  difference  between  the  unified  evolution 
(68), i.e., the  collective brain, and the  coupled evolutions (73), one has to recall  that in 
physics the  violation of  compatibility  conditions  are  usually  associated  with  fundamentally 
new concepts or  a  new  physical  phenomenon. For instance, incompatibility  of  velocities in 
a fluid, i.e., non-existence of a  velocity  potential: 

introduces vorticity  and  rotational flows. In  the  same  way,  the  violations of Eqs. (67), 
i.e., non-existence of  a joint probability (68), leads  to  coupled  evolution  of  the  stochastic 
processes (73), while  the  degree  of  the  incompatibility 

can be  interpreted  as  a  some  sort of “vorticity”  in  the  probability  space. 
As mentioned  earlier,  the  “vorticity”  makes  impossible to  find such a  transformation 

of the coordinates xi which would decouple  the  stochastic processes (73),  i.e., these 

processes are entangled. 
Thus, the  “vorticity” (76) brings a new dimension in  the complexity  of  the  motor- 

mental  dynamics (69): it makes  the  control  of  the  motor  dynamics  of  each  specie less 
centralized  and  more distributed. In  addition  to that, as  shown in [lo’  , the  information 
capacity  of a set  of  entangled  stochastic  processes (73) is  greater  than  that  of  the processes 
having  the joint probability (68). 
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In the same way as it was  described  for a simple specie, the evolutions (68) and 
(73) can be  driven  not  only by nonlinear  instability, but  by  the  objective as well, and  that 
includes learning, self-nonself  discrimination (on the  level of swarms), calibration, etc. 
10. Minimum-free-will  principle 

In our previous discussion, for the  proof  of concept, the nonlinear  function p ( f )  

has  been chosen in  the  simplest  form (6). However,  the  only  restriction  imposed  upon  this 
function  is  the  condition 

O I p 1 1 .  (75) 

Therefore, in  general , it  can  be sought in  the form: 

where q(f)is an  arbitrary  function. 

If this function is  parametrized, for instance,  as 

then  the  weights ak can  be  found from the  objective  by  minimization  of  the corresponding 

functional (see Eqs. (46)-(53). 
But suppose  that  there  are  several  different  ways in  which  the  same  objective  can  be 

achieved, i.e., the function (79) includes a set of  weights P 

which do not  affect the objective.  How  the  specie  should solve such a redundancy 
problem? 

Let us  assume  that  the  physical (i.e., the  passive)  component of  the specie motion  is 
a symmetric random  walk  which  is a discretized  version of  the Brownian  motion. 

Then the  transitional  probability p in Eq. (78) can be decomposed  as: 
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In this form, the  nonlinear component of  p, i.e., the  function @ ( f )  represents the deviation 

from the  passive motion, i.e., the “free will.” 
Now  we  will  make  the  following  statement:  if a specie  can  achieve its objective  by 

several different ways,  it  will choose one  which  minimizes  the  deviation from the passive 
motion, i.e., it  will  minimize its free will component. In  other words, if a specie is offered 
a “free  ride” by physics, it should take it. Ths minimum-free-will  principle can be 
associated with  the  Gaussion  minimum  constraints  principle according to  which  the  motion 
of a constrained system minimizes  the  deviation  from  the corresponding free motion. 
However, in contradistinction  to that, the  minimum-free-will  principle is not  required  by 
physics, but it is rather imposed  by biology. Indeed, a “crazy” specie can  move  “against” 
the  minimum-free-will  principle,  but  it will waste  its  energy  and  “intellectual” effort, and as 
a result, its chances for survival  will  be  decreased. 

A natural  measure of deviation  from  the  passive  motion  is  the  difference: 

where H, and H are  the  entropies of the  passive  and  the  actual  motions, respectively. 

Now we can  give  the  mathematical  formulation of  the minimum-free-will  principle: 

if  the specie objective  is  defined  in  the  time  interval 0 S t 5 T ,  its  motion  will  minimize  the 
free-will  mieasure 

T 

Fw = C I H o  - HI 
t = O  7 

subject to the  objective.  In  other words, if  the weights a in Eq. (80) are  defined  by  the 

objective, then  the  redundant  weights p’ must  be  found  from  the condition: 

One  should  recall  that 

L 

H = -xfrlog,f , ,  0 5  X 5 L 
.r=O 
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and f is found from Eq. (2) where p = S i n ’ [ q ( f , P ) ]  

10 Discussion and conclusion. 
The natural  immune  system  is a subject of  great  research  interest  because  it  provides 

an  excellent  model  of  adaptive  processes  operating  at the  local  level  and  of  useful  behavior 
emerging at  the global level;  therefore,  it inspires new  powerful  paradigms for information 
processing and computing. 

However, since the  biological  machinery of the  immune system is poorly 
understood, the only alternative is to  mimic  the  phenomenology  of its performance using 
some  equivalent  physical models. Such a model  which  simulates  the  main  immune 
functions based upon dynamics  of  behavior  of  “body cells” and  “invaders”  is  developed in 
this paper. 

In contradistinction to existing  stochastic  models  (multi-agent nets, colored petri 
, the  proposed  model  is  based upon the  concept  of  reflection, i.e., the 

human ability to take the  position  of  an observer in  relation  to  one’s  own  thoughts,  and  that 
makes  it more adaptable to  the  world  of  biological  and  social  evolutionary  processes. 

net) (D. Dasgupta, 1998) 

The  model consists of a generator of stochastic  processes  which  represents  the 
motor  dynamics  in  the  form of  nonlinear  random walks, and a simulator  of  the  nonlinear 
version  of  the  Fokker-Planck  equation  which  represents  the  mental dynamics. 

It has been  demonstrated  that  coupled  motor-mental  dynbamics  can  simulate such 
processes as emerging  self-organization,  self-identification  and repair, self-nonself 
discrimination, formation of  acquired  immunity, etc. Therefore, the proposed model  can 
serve as a starting point  for a unified  approach to immune  inspired  information processing 
and computing. 
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